记录下三体小说里的常见名词:
-
tf1.x实现张量的梯度反转
tensorflow实现梯度反转的方法有两种:
-
DANN & GRL
域自适应是指在目标域与源域的数据分布不同但任务相同下的迁移学习,从而将模型在源域上的良好性能迁移到目标域上,极大地缓解目标域标签缺失严重导致模型性能受损的问题。
介绍一篇经典工作 DANN :
-
Uplift Model离线评估指标
uplift建模难点在于无法获得个体的ground truth,因为它是反事实的。只能通过构造treatment和control两组镜像人群,对比两组人群的转化增量,来实现模型性能的评估。
-
M1 Mac安装Homebrew
Homebrew对ARM芯片的Mac支持不友好,这里切换到国内镜像网站安装,速度快且稳定,没有乱七八糟的报错: 1/bin/bash -c "$(curl -fsSL https://gitee.com/ineo6/homebrew-ins... -
多模态大模型-从BLIP到LLaVA
多模态大模型方面的经典工作:多模态大模型: 盘点&Highlights part1——从BLIP到LLaVA -
点沙成硅
将一粒沙子转化为芯片的过程是一个复杂而精密的制造流程。芯片制造始于原材料硅的提纯,然后经过多步骤的工艺,最终变成用于计算机、手机等设备的半导体芯片。以下是这个过程的主要步骤:
-
U-Net原理及代码实现
U-Net是医疗领域进行语义分割的利器,随着AIGC的爆火,U-Net已成为Diffusion Model的backbone,有必要详细记录下。
-
Mixtral MoE代码解读
一直对稀疏专家网络好奇,有些专家没被选中,那么梯度是否为0,这一轮被选中有梯度,下一轮没被选中无梯度,模型可以训练收敛吗?
-
千卡GPU训练难点
没吃过猪肉,但也要见识下猪跑:你的真实姓名的回答 千卡训练经验的含金量:Frossmann的回答